1. Find
$$\lim_{x\to 0} \left(\frac{e^x - 1}{e^{2x} - 1} \right)$$

2. Find
$$\lim_{x \to -\infty} \left(\frac{\sqrt{2+3x^2}}{x+4} \right)$$

3. Find
$$\lim_{h \to 0} \frac{(5+h)^4 - 5^4}{h}$$

4. If
$$g(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$$
 find $g'''(4)$

5. On what open interval(s) is $f(x) = x^3 - x^2 - x + 1$ decreasing?

6.	Find the slope of the line tangent to $x^3y + xy^3 = 2$ at $(1,1)$
0.	That the slope of the fine tangent to $x y + xy = 2$ at $(1,1)$

7. If
$$f(x) = x^{2/3}$$
, find a value of x on [0,1] that satisfies the Mean Value Theorem

8. A particle's position is given by
$$s(t) = \frac{t}{t^2 + 1}$$
 (s in feet, t in seconds. Find the velocity of the particle at 2 seconds (include units)

9. Find all x values for which
$$f(x) = (2x+1)^2 (x-3)^4$$
 has a horizontal tangent

10. Air is being pumped into a spherical balloon in such a way that its volume is increasing at a constant rate of
$$200\pi$$
 cm³/s. Find the rate of change of the radius when the radius is 5 cm. (include units)

11. On what open interval(s) is
$$f(x) = xe^x$$
 concave up?

12. If
$$y = \cos^2(\tan x)$$
 find $\frac{dy}{dx}$

13. Find the minimum function value for
$$f(x) = x - \sqrt{1 - x^2}$$
 on $[-1,1]$ (answer exactly)

14. Find
$$\frac{d}{dx} \int_{e}^{x^2} \ln x dx$$

15. The figure shows the graph of the derivative f' of a function. For what value(s) of x does f have a local extreme value?

16. Given the values in the table below, if h(x) = f(g(x)), find h'(2)

x	f(x)	f'(x)	g(x)	g'(x)
2	3	-2	5	4
5	28	11	26	10

17. Find $\int_{-3}^{1} f(x) dx$ for $f(x) = \begin{cases} -x - 1 & \text{if } -3 \le x \le 0 \\ -\sqrt{1 - x^2} & \text{if } 0 < x \le 1 \end{cases}$ (answer exactly)

18. Find $\int \tan x \ln(\cos x) dx$

19. Find the average value of $f(x) = \frac{1}{x}$ on [1,3] (answer exactly)

20. Find the area enclosed by $y = e^x$, $y = e^{3x}$ and x = 1 (answer exactly)

2012 MU A INDIVIDUAL TEST SOLUTIONS

1.
$$\frac{1}{2}$$

2.
$$-\sqrt{3}$$

4.
$$-\frac{3}{1024}$$

5.
$$\left(-\frac{1}{3},1\right)$$

7.
$$\frac{8}{27}$$

8.
$$-\frac{3}{25}$$
 ft/sec (must have units)

9.
$$x = -\frac{1}{2}, \frac{2}{3}, 3$$

11.
$$(-2, \infty)$$

12.
$$-\sin(2\tan x)\sec^2 x$$
 or $-2\sin(\tan x)\cos(\tan x)\sec^2 x$

13.
$$-\sqrt{2}$$

14.
$$2x \ln(x^2)$$
 or $4x \ln x$

17.
$$\frac{3}{2} - \frac{\pi}{4}$$
 or $\frac{6 - \pi}{4}$

18.
$$-\frac{1}{2} \left(\ln(\cos x) \right)^2 + C$$

$$19. \qquad \frac{1}{2} \ln 3 \text{ or } \ln \sqrt{3}$$

$$20. \qquad \frac{1}{3}e^3 - e + \frac{2}{3}$$